What Sets the Biological Clock?

Most people run on an internal 24-hour cycle, synchronized to the light and dark cycles of the outside world. Information about external luminescence is conveyed to the suprachiasmatic nucleus (SCN) of the hypothalamus, which incorporates it into what is known as the circadian rhythm, or biological clock. In cold-blooded vertebrates, deep-brain photoreceptors allow for photoentrainment, the process by which the eyes facilitate setting of the circadian clock. Mammals do not have these receptors;

Written byJosh Roberts
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

In cold-blooded vertebrates, deep-brain photoreceptors allow for photoentrainment, the process by which the eyes facilitate setting of the circadian clock. Mammals do not have these receptors; instead, mammalian eyes collect light and send the information back to the SCN through the optic nerve, a pathway called the retinohypothalamic tract (RHT). This is known, in part, because mice with removed eyes cannot reset their clocks.

Oddly enough, about half of all blind people can photoentrain, as can mice that lack functional rods and cones, implying that another receptor capable of processing light exists in the eye. Tracer studies, in which a marker traverses the neuron from one end to the other, indicated more than 20 years ago that a small subset of cells found in the innermost part of the retina innervates the SCN. These retinal ganglion cells (RGCs), which were not known to contain any photopigments of their own, were ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo