Where the expressed genes are

Study of chromatin distribution overturns theory that accessibility governs expression

Written byCathy Holding
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Despite widely held beliefs that open and condensed regions of chromatin correlate with active and silent regions of expression, respectively, there is no strict correlation between open chromatin and the activity of a gene, according to a paper in Cell this week. Instead, genes that need to be rapidly activated or switched off are held in regions of open chromatin structure–possibly constraining certain genes to lie within the same genomic region throughout evolution, according to lead author Wendy A. Bickmore of the MRC Human Genetics Unit in Edinburgh.

"Previously, chromatin structures have really only been studied as individual genes, one by one, so we wanted to take a more global approach to ask questions about how chromatin is organized across the whole human genome," Bickmore told The Scientist.

Bickmore's team labelled the DNA from open or closed chromatin by fluorescence in situ hybridization (FISH) so they appeared either green or ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH