Wild Relatives

As rich sources of genetic diversity, the progenitors and kin of today’s food crops hold great promise for improving production in agriculture’s challenging future.

Written byColin K. Khoury, Nora P. Castañeda-Álvarez, and Hannes Dempewolf
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ALL IN THE FAMILY: Wild relatives (left) of important cultivated crops (right) are vital sources of genetic diversity for developing new crop varieties able to withstand challenges ranging from arable land restriction to climate change.Plants closely related to crop species, such as wild maize in Mexico and wild rice in West Africa, often happily grow in and around the disturbed soils of agricultural fields, passing their genes along to these crops with the help of wind and insects. Some traditional farmers even encourage such “weeds” because they recognize that their presence has a positive effect on their crops.

Modern, industrial farms no longer maintain this direct connection between domesticated and wild cousins, but plant breeders have found ways to take advantage of the genetic diversity found in wild relatives to develop new, hardier plant varieties. For a wide and growing range of food, fiber, industrial, ornamental, and other crops, wild relatives have contributed to improved size, taste, and nutritional content; tolerance to abiotic stress; and, most frequently, pest and disease resistance.

Wild relatives are exposed to myriad threats including habitat destruction, introduction of industrial agricultural practices, pollution, invasive species, and climate change. Due to a combination of these pressures, many unique populations of wild relatives of the world’s important crops, such as maize, peanut, potato, and cowpea, are becoming smaller and more fragmented.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies