With Fluorescence Microscopy, Researchers See Cells In A New Light

Cells In A New Light By combining the sensitivity of fluorescent dyes with optical systems that can detect colorful but low-intensity fluorescent light, researchers in many life sciences are able to peer inside cells and view fine detail as never before. With a fluorescent microscope, an investigator is now better able to study individual cells and image subcellular entities, such as organelles, proteins, microtubules, and chromosomes. Owing to advances in fluorescent microscopy techniques, res

Written byHolly Ahern
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

Cells In A New Light By combining the sensitivity of fluorescent dyes with optical systems that can detect colorful but low-intensity fluorescent light, researchers in many life sciences are able to peer inside cells and view fine detail as never before. With a fluorescent microscope, an investigator is now better able to study individual cells and image subcellular entities, such as organelles, proteins, microtubules, and chromosomes. Owing to advances in fluorescent microscopy techniques, researchers have the ability to study the intracellular dynamics of living cells, as such events occur in real time.

SEPARATES SIGNALS" Nikon's QuadFluor epifluorescence illuminator "Within the last 15 years, fluorescence microscopy has developed into one of the most important techniques in cell biology," comments Eric Gruenstein, a professor of molecular genetics and biochemistry at the University of Cincinnati Medical School and president of Cincinnati-based Intracellular Imaging Inc. "Two relatively recent developments have pushed fluorescence microscopy to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo