without a receptor

subunit and may act as a receptor-independent G protein activator.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

G protein activation is the mechanism by which extracellular molecular signals are converted into intracellular responses and was previously thought to be exclusively triggered by extracellular stimuli. But, in October 21 Cell, Matthias Schaefer and colleagues from the Research Institute of Molecular Pathology in Vienna show the first in vivo evidence for G protein activation solely by an intracellular protein.

Schaefer et al. studied the mechanism Drosophila employs to orient cell division in the nervous system. They found that asymmetric activation of heterotrimeric G proteins by a receptor-independent mechanism controls asymmetric cell divisions in different cell types. The G protein subunit Gαi localized apically in neuroblasts and anteriorly in sensory organ precursor cells before and during mitosis. In addition, subunit Gαi was colocalized and associated with the Pins (Partner of Inscuteable) protein that induces the release of the βγ subunit. They conclude that Pins could act as a receptor-independent G ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Tudor Toma

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours