XX marks the spot

Epigenetic modification of both X chromosomes in female cells marks them for X inactivation

Written byCathy Holding
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Inactivation of one X chromosome occurs in XX female cells to bring about equivalence of X gene expression with male cells. It requires either a counting mechanism that triggers X inactivation in cells with more than one X or a blocking mechanism that saves a single X from an undiscerning inactivation process acting on all remaining Xs. In the August 1 Human Molecular Genetics, Laura P. O'Neill and colleagues from the Chromatin and Gene Expression Group at the University of Birmingham Medical School report that both X chromosomes are epigenetically marked in female cells, while the autosomes and the single X in male cells are unmarked, suggesting that a chromatin-based counting mechanism restricts X inactivation to cells with more than one X chromosome (Human Molecular Genetics, 12:1783-1790, August 1, 2003).

O'Neill et al. immunoprecipitated acetylated isoforms of the four core histones in mouse embryonic stem (ES) cells and assayed DNA ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH