California may soon become the first US state to adopt legislation banning the manufacture and sale of children's products containing certain chemicals designed to soften plastics. The initiative follows mounting scientific evidence in recent years about the potential harm of phthalates and so-called endocrine disruptors such as Bisphenol A (BPA). If bill AB 319, introduced by Assembly-member Wilma Chan (D-Oakland), passes, California would be the first state to follow the lead set by a European Union directive six years ago that put an emergency ban on baby toys made from plastics containing phthalates. At the time, European ministers said their decision was based on the "precautionary principle" and they would review it "in the light of new scientific data."

Data indicate that dangers do in fact exist, and bans set to limit childhood exposure might not go far enough. Yet many argue over the merit of the model.



To explore these issues, vom Saal teamed up with reproductive biologist Barry Timms at the University of South Dakota to investigate the effects of estrogenic compounds on pregnant mice. A decade ago they had found that fluctuations in the levels of the natural endogenous hormone estradiol induced changes in prostate development in utero. "The recent awareness that many environmental chemicals act as hormone mimics led us to study the consequences further, using mouse prostate development as an animal model," says Timms.


They fed low levels of BPA (10 μg/kg/day) to pregnant mice for four days.1 They then removed fetuses by cesarean section and removed the prostates from male embryos. Using sophisticated 3-D image reconstruction, they made precise measurements of the developing prostate. As a positive control, Timms' group used diethylstilbestrol (DES), an estrogenic compound similar in structure to BPA and associated with reproductive organ defects and cancer in humans.

Timms and vom Saal found that low-level exposure to the compounds caused an increase (up to 40%) in the size and the number of the prostate ducts, and increases in proliferation of the basal epithelial cells of the primary ducts. They also observed a narrowing of the bladder neck and urethra. The researchers suggest that the observed deformities could predispose animals to prostate cancer and bladder disease in later life, and vom Saal says that the virtually identical effects of BPA and DES make a strong case for the relevance of the rodent model and the potential human hazards.

Researchers in the field agree that the Timms study has carefully examined the issue of low doses. "The doses used in [the Timms] study are well within the range of what is currently stated by both European and US government agencies to be 'safe' for human consumption," notes MacLusky. Zoeller says that the study is particularly rigorous with respect to the sampling and the high anatomical resolution.

Nevertheless, researchers are divided over the study's relevance to human health. "I have doubts as to what it means," says Sharpe. "Nobody, as far as I am aware, including the authors, has shown that the effects that they report (i.e. an increase in prostatic budding, etc.) actually lead to any adverse change in the prostate in adulthood." Michael Joffe, an epidemiologist at Imperial College in London, agrees. "Whether their endpoint is relevant to future prostate cancer, as they claim, is difficult to judge," Joffe notes.


This is just one of many recently published works cautioning about the developmental effects of plastic components. Ana Soto and colleagues at Tufts University Medical School in Boston showed that environmentally relevant doses of BPA affect mammary gland development in mice.2 Shanna Swan's group at the University of Rochester School of Medicine and Dentistry, New York, reported an association between male genital defects and phthalate exposure in pregnant women.3 Also, in collaboration with researchers at Yale University, MacLusky found evidence for BPA effects on brain development in rodents.4

Joffe points out that "the interest in male reproduction was sparked by interest in male fertility – the falling-sperm-counts story – and the widespread rise in testicular cancer throughout the developed world. [But] none of these findings can explain the descriptive epidemiological findings that started the concern." The rise in testicular cancer, for example, began about a hundred years ago, before the introduction of BPA or phthalates.

Michael Skinner from the Center for Reproductive Biology at Washington State University, says, "The take-home message from these recent studies is that the fetal basis of disease is becoming much more critical than we previously thought." His group recently found that the effects of high-dose antiandrogenic compounds could be passed on epigenetically for up to four generations in rats.5 Skinner has begun to study the effects of environmentally relevant doses and is investigating other phenotypes, such as cancer and prostate disease. Skinner says, "Potential biohazards of environmental toxins now need to be reevaluated in terms of transgenerational effects." Moreover, he reiterates the susceptibility during fetal development.

These conclusions will have consequences for future legislative initiatives, which are currently based on exposure to infants. "That's inappropriate," says Skinner, who argues that fetal, prenatal, and adult exposure should all be rethought. The EPA is currently considering this issue. "The Californian bill may not go far enough," says MacLusky, "since the exposure of women during pregnancy may be an even greater cause for concern than the exposure of children. In the case of children and babies, it is essential to err on the side of caution."

Interested in reading more?

Magaizne Cover

Become a Member of

Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member?