A Common Path to Unconsciousness

Analyses of brain activity patterns show that different drugs induce anesthesia via a common neural mechanism.

Written byDan Cossins
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

KetamineWIKIMEDIA, PSYCHONAUTDiverse anesthetic drugs, each with distinct molecular targets, disrupt communication between the front and rear of the brain, according to a new study published today (May 22) in Anesthesiology. The findings provide the strongest evidence yet that inhibition of frontal-parietal connectivity may be the common mechanism by which all anesthetics induce loss of consciousness.

“If the study’s findings are confirmed by subsequent work, the paper will achieve landmark status,” wrote Jamie Sleigh of the University of Auckland, who was not involved in the study, in an accompanying commentary. “[It] not only sheds light on the phenomenon of general anesthesia, but also how it is necessary for certain regions of the brain to communicate accurately with one another for consciousness to emerge.”

Researchers already knew that the commonly used anesthetics sevoflurane and propofol break down this particular route of brain communication. But it was not clear if ketamine, which acts on different molecular targets, works in the same way. To find out, a team led by George Mashour of the University of Michigan, Ann Arbor, analyzed electroencephalogram (EEG) recordings from ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies