A Database of Genetic Differences Among Lab Mice

Researchers have catalogued mutations in the coding regions of 36 of the most important mouse strains.

Written byAshley P. Taylor
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIMEDIA, MAGGIE BARTLETT, NHGRIAs many a researcher can attest, not all mice are created equal. Different strains’ genetic backgrounds can greatly influence the outcomes of experiments. To take an example well-known to mouse geneticists, when the gene Apc (adenomatous polyposis coli) is mutated in C57BL/6J mice, the mice develop colon polyps; but the same genetic change, called the “Min mutation,” has almost no ill effects when introduced in another strain, AKR/J. The same experiment produced different results merely because of the strain of lab mice, explains University of Wisconsin geneticist Amy Moser, who worked on the Min mutation.

Now, scientists can better resolve what genes are responsible for such strain-related discrepancies. Reporting today (August 7) in PNAS, Ghent University researchers have published a database of proteins predicted to be nonfunctional in the 36 most popular and important inbred strains of laboratory mice. The database, says Moser, who was not involved in the work, may help researchers better understand their mice and, hopefully, design better experiments as a result.

The study authors Steven Timmermans, Marc Van Montagu, and Claude Libert have compared the coding sequences of the go-to lab mouse C57BL/6J (black 6) to 36 other laboratory strains and, based on these data, determined which of their proteins are likely to be defective.

Scientists began inbreeding mice, through brother-sister mating at every generation, about ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
An image of a DNA sequencing spectrum with a radial blur filter applied.

A Comprehensive Guide to Next-Generation Sequencing

Integra Logo
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel