A Practical Guide to the HapMap

Here are five tips to getting the most out of your next gene-association study

Written byAileen Constans
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Phase 1 of the International HapMap Project (http://www.hapmap.org), published in November 2005, was hailed by the mainstream press as a revolutionary tool for gene-association studies. Researchers using the data have been similarly enthusiastic. Says Jeanette McCarthy of the Graduate School of Public Health, San Diego State University, "It's an unprecedented resource. ... It provides a lot more information not just for people doing whole genome association studies, but [also] for those focused on specific regions of the genome or even candidate genes. It can add a lot of information and help us pinpoint the genes a lot easier."

Left out of the discussion, however, are more practical issues. Like any map, the HapMap requires some training to use properly. How, for instance, do you use the data? Are there things to look out for when choosing SNPs (single nucleotide polymorphisms) and determining haplotype block boundaries? The Scientist spoke with geneticists ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH