A Scrambled Mess

Why do so many human eggs have the wrong number of chromosomes?

Written byKaren Schindler
| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

A light micrograph of a section of fetal ovary shows primordial follicles (light pink ovals) with oocytes (dark pink spots) that have already begun to mature into fertilizable eggs. But the process won’t be complete for decades, during which time mistakes in chromosome division can occur.© TISSUEPIX/SCIENCE SOURCE

Up to a quarter of pregnancies are not carried to term; oftentimes an embryo is aborted by the body before a woman even knows she’s pregnant. The most common cause of miscarriage is egg aneuploidy—the oocyte contains too many or too few chromosomes. Aneuploidy is thus the leading genetic cause of infertility, and those embryos that are not miscarried can result in children with developmental disorders, such as Down syndrome (trisomy 21), Edwards syndrome (trisomy 18), and Turner syndrome (monosomy X).

The life of an oocyte begins during female fetal development but does not finish for decades, providing multiple windows of opportunity for problems that com­promise egg quality.

For more than 80 years, the scientific community has known that the incidence of Down syndrome births ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH