A tunicate bends the rules

gene clustering challenges textbook thinking

Written byStuart Blackman
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Hox gene clusters are not necessary to build a chordate, a paper published in the September 2 issue of Nature shows. The finding raises questions about established beliefs on the subject of body plan development.

"If you open any textbook, you'll read that the Hox cluster is conserved in all bilaterian animals," Daniel Chourrout at the University of Bergen, Norway, told The Scientist. But his study of the tunicate Oikopleura dioica revealed its Hox genes to be distributed in nine locations around the genome.

Hox gene clusters specify the body plan of most multicellular animals, suggesting that they date back to the common ancestor of worms, arthropods and vertebrates. They are among the most highly conserved of genetic sequences, and display a collinear pattern of expression, whereby their sequence on a chromosome reflects where they are expressed along an animal's anteroposterior axis.

Chourrout said that a degree of Hox fragmentation ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH