Activation by an HDAC

Yeast histone deacetylases can activate gene expression by deacetylating histone tails.

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Histone deacetylases are generally thought of as repressors of gene activity. In the November 15 Science, Amy Wang and colleagues report that the Hos2 histone deacetylase from the yeast Saccharomyces cerevisiae can in fact induce gene activity (Science, 298:1412-1414, November 15, 2002).

Chromatin immunoprecipitation (ChIP) techniques, using specific antibodies to sites of acetylation in all four core histones, were applied to screen for genes whose chromatin is hyperacetylated in mutants lacking Hos2 or the related Rpd3 histone deacetylase. Hos2 showed a unique histone specificity and was preferentially required for H3 and H4 deacetylation on some genes. Hos2 deacetylation of H4-K12 was associated with transcriptional activation of the GAL genes in galactose conditions.

Hos2 ChIP was combined with microarray hybridization to demonstrate that Hos2 associates with the coding regions of active genes genome-wide. Set3, a factor associated with Hos2, was also required for efficient transcription.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH