Amélie Gaudin studies how plants survive harsh environments

The UC Davis agroecologist grew up on a farm and now works to help farmers grow more resilient crops.

Written byCatherine Offord
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

PHOTO BY MAYUMI ACOSTA PHOTOGRAPHYHaving grown up on a farm in France, Amélie Gaudin says it’s little wonder she ended up working with crops. “I’ve been interested in agriculture for a long time,” she says. “So I’ve been following my passion.” But it was her experience studying the effects of drought in the early 2000s at the International Potato Center in Lima that gave Gaudin the impetus to pursue this passion academically.

“We farm under the assumption that resources will always be available,” she says. But seeing resources under threat from climate change in Peru, “that’s when it began to make sense to me that we need to start thinking about farming in a different way.”

Keen to explore these ideas, Gaudin joined crop researcher Manish Raizada’s lab at the University of Guelph in Ontario, Canada, as a master’s student in 2007. There, she undertook a detailed study of the mechanisms underlying responses to low-nitrogen conditions in maize roots. “Phenotyping roots, especially roots of a large plant like maize, is very difficult,” says Raizada. So Gaudin proposed an unconventional technique: aeroponics, which grows plants in air misted with nutrient solution. “I didn’t know what aeroponics was,” Raizada ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

June 2017

Foregoing Food

The physiological effects of fasting

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH