An Ear for Home

Pigeons may use ultra-low-frequency sounds to navigate—a strategy that could steer them off course in the face of infrasonic disturbances, such as sonic booms.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ANDRZEJ KRAUZEOn October 5, 1998, more than 2,000 homing pigeons went missing, some straying from their lofts for weeks. They had been released at the start of two races—one from northern Virginia to Allentown, Pennsylvania, and another from western Pennsylvania to Philadelphia—but more than 90 percent of them didn’t fly directly home, as they normally do. “The race was a ‘smash’—the birds [didn’t] come back,” says Jonathan Hagstrum, a geophysicist with the US Geological Survey. “Normally, a smash is due to weather—if it’s raining, the birds land—but the weather was fine, everything was great, the birds just didn’t show up. . . . Nobody could explain it.”

Curious, Hagstrum, who read about the mysterious disappearances in his local newspaper, started poking around for possible explanations. It had previously been reported that pigeons could sense very low-frequency, or infrasonic, sounds. And Hagstrum knew that low-frequency sounds are continually being produced by collisions between waves in the deep ocean, which can generate vibrations in the earth that are transferred to the atmosphere and reflected from landmarks like hills and cliffs. “I think it’s going to produce a sound with a distinctive signature,” he says—something that might signal “home” to a pigeon. Perhaps there was some sort of sonic disturbance the day of the 1998 races, he thought.

He called the Pennsylvania Department of Transportation, but it had not been performing any blasting in the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome