Annotation by SAGE

The inventors of SAGE technology describe a modified method to facilitate gene discovery.

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Most of us are acutely aware of the limitations of current in silico methods for predicting genes in the human genome. In the May issue of Nature Biotechnology, Saurabh Saha and colleagues at the Johns Hopkins Medical Institutions describe an experimental approach for gene discovery and genome annotation (Nature Biotechnol 2002, 19:508-512).

The method is an adaptation of the SAGE (serial analysis of gene expression) technology developed in the Vogelstein/Kinzler lab at Johns Hopkins. Compared to SAGE, the new 'LongSAGE' method uses a different type IIS restriction endonuclease (called MmeI) to create longer 21 base-pair 'tags', and the longer tag length should allow unique assignment to genomic loci.

Saha et al. analyzed 28,000 transcript tags expressed by a colon cancer cell line and found that the majority could be uniquely assigned and many of the remaining corresponded to duplicated sequences. They provide experimental evidence for the expression of 'hypothetical' genes ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH