Artificial Blood Vessels Help Scientists Study Deadly Snakebites

Venoms from four different snake species work differently to disrupt blood vessels.

Claudia López Lloreda, PhD
| 3 min read
Mozambique cobra snake

Scientists developed organ-on-a-chip technology to study the effects of deadly snake venoms on blood vessels.

iStock, Tommy Spitzer

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

When some snakes bite, they can deliver a powerful punch of toxin-filled venom that damages organ systems and can even result in death. Annually, around 400,000 snakebite victims die worldwide. One of the most devastating effects of snake venom is its ability to cause internal bleeding, or hemorrhage.

Now, a team of researchers developed an artificial system of blood vessels that they can use to study exactly how snake venom breaks them down and causes bleeding.1 They created an organ-on-a-chip model of blood vessels that better mimics the human circulatory system to study this hemorrhagic process and found that venoms from different snake species work to break down blood vessels in different ways. They published their results in Scientific Reports. This 3D blood vessel model now allows researchers to effectively study the peculiarities of venoms from different species and test different antibodies to mitigate the detrimental effects.

“This is a very good contribution to our field because it allows us to study the mechanism of toxicity in this very well-defined model,” said José María Gutiérrez Gutiérrez, a toxicologist at the University of Costa Rica, who was not involved with the study. “[The study] furthers our understanding of the mechanism of action of hemorrhagic toxins because it reproduces the real dynamics of blood flow in blood vessels”.

Previously, researchers studied the effects of snake venom on blood vessels by using cultured endothelial cells, the cells that make up the wall of vessels. However, these so-called static models fail to reproduce what occurs in vivo since they lack a key component of the circulatory system: the physical forces exerted by blood flowing through the blood vessels. These biophysical forces, Gutiérrez Gutiérrez said, potentially contribute to the damage caused by snake venom.

To create a model of the human circulatory system, biologist Mátyás Bittenbinder teamed up with chemist Jeroen Kool, both researchers at Vrije University Amsterdam.

They cultured endothelial cells alongside essential blood vessel molecules, such as collagen, and introduced the mixture into microfluidic channels. There, the cells formed into 3D tubular structures that resembled blood vessels.

Once they had the model in place, the team tested venoms from four different common snake species: the West African carpet viper, the many-banded krait, the Mozambique spitting cobra, and the Indian cobra. As the venom flowed through the artificial blood vessels, the researchers measured how much fluorescent tracers leaked out of the vessels, an indicator of how well the endothelial cells held up in the presence of the toxic cocktails. All four snake venoms elicited blood vessel leakage, although some more than others and at different time points throughout a 90-minute observation period.

“It's a better mimic of the in vivo conditions and you can look at the effects [in] real time, which is obviously not possible in other animal models,” said Bittenbinder. “You can really see the blood vessel losing its integrity”.

But, when the researchers explored how exactly this disruption was occurring, they found that the venoms exhibited different mechanisms of action. In particular, the highly hemorrhagic venom from the West African carpet viper, which is native to Nigeria, seemed to “delaminate” the endothelial cell layer from the extracellular matrix. Other snake venoms, such as those of the Mozambique spitting cobra and the Indian cobra, induced cytotoxicity by directly disrupting the cellular membrane and killing off the endothelial cells.

Moving forward, researchers can use the system to probe specific toxins in the venom and identify the components responsible for the damage, Gutiérrez Gutiérrez said. “Venoms comprise a large mixture of substances with different actions, so it's like a black box.”

Additionally, the new technology enables scientists to run high-throughput screens of molecules that could stop the damaging effects of venoms. “We want to use this information to see how can we block the cytotoxicity,” said Kool. “It's not a miracle bullet that will bring the medicines to the world but it's another tool that is valuable in being better able to develop new treatments.”

Keywords

Meet the Author

  • Claudia López Lloreda, PhD

    Claudia Lopez-Lloreda, PhD

    Claudia is an intern at The Scientist with a background in neuroscience. Her work has appeared in Science, Nature, Science News, and Scientific American.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

An illustration of different-shaped bacteria.

Leveraging PCR for Rapid Sterility Testing

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad