Artificial Skin Communicates with Neurons

A new flexible sensor can detect touch and generate electrical pulses that signal intensity of pressure to mouse neurons in vitro.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Model robotic hand with artificial mechanoreceptorsBAO RESEARCH GROUP, STANFORD UNIVERSITYResearchers have developed a new type of artificial skin that could pave the way for responsive prosthetics. The flexible, carbon nanotube–laced polymer detects pressure and translates the sensation into pulses of electricity that can be interpreted by the mammalian nervous system, according to the in vitro mouse study published last week (October 15) in Science.

“Previously, with plastic material, we and others in the field have been able to make sensitive touch sensors, but the electrical signal that comes out from the sensor is not the right format for the brain to be able to interpret it,” study coauthor Zhenan Bao, a chemical engineer at Stanford University, told BBC News. “Our sensor is now coupled with a printed, simple electronic circuit. That circuit allows our sensor to generate electrical pulses that can communicate with the brain. We see this as the first step towards using plastic materials for artificial skin on prosthetic limbs.”

Bao and her colleagues demonstrated that the sensors could relay pressure signals to the mammalian nervous system by linking them to a blue LED light that in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo