Artificial Skin Communicates with Neurons

A new flexible sensor can detect touch and generate electrical pulses that signal intensity of pressure to mouse neurons in vitro.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Model robotic hand with artificial mechanoreceptorsBAO RESEARCH GROUP, STANFORD UNIVERSITYResearchers have developed a new type of artificial skin that could pave the way for responsive prosthetics. The flexible, carbon nanotube–laced polymer detects pressure and translates the sensation into pulses of electricity that can be interpreted by the mammalian nervous system, according to the in vitro mouse study published last week (October 15) in Science.

“Previously, with plastic material, we and others in the field have been able to make sensitive touch sensors, but the electrical signal that comes out from the sensor is not the right format for the brain to be able to interpret it,” study coauthor Zhenan Bao, a chemical engineer at Stanford University, told BBC News. “Our sensor is now coupled with a printed, simple electronic circuit. That circuit allows our sensor to generate electrical pulses that can communicate with the brain. We see this as the first step towards using plastic materials for artificial skin on prosthetic limbs.”

Bao and her colleagues demonstrated that the sensors could relay pressure signals to the mammalian nervous system by linking them to a blue LED light that in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery