Astronaut Twin Study Reveals How Space Impacts the Body

Preliminary results suggest a major shift in one astronaut’s microbiome.

Written byDiana Kwon
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Astronaut Scott Kelly (right) and his twin brother, retired astronaut Mark Kelly (left) ROBERT MARKOWITZ, FLICKR Astronauts Scott and Mark Kelly are identical twins and the test subjects of the NASA Twin study, a unique investigation into how stressful spaceflight is to the body. While Scott Kelly spent 340 days at the International Space Station (ISS), his twin brother remained on Earth and became a ground-based control subject. Since Scott returned home last March, ten groups of researchers have been analyzing biological samples collected from each sibling before, during, and after the trip. The scientists released preliminary results at the annual Investigator’s Workshop for NASA’s Human Research Program in Texas (January 23 to 26).

“Almost everyone is reporting that we see differences,” Christopher Mason, a geneticist at Weill Cornell Medicine who was involved in the study, told Nature. For example, researchers found Scott’s telomeres were longer and his levels of DNA methylation were lower in comparison to his twin. Another team found differences in the twins’ microbiomes—there was a major shift in the ratio of two dominant bacterial groups (Firmicutes and Bacteroidetes) in Scott’s digestive tract, while Mark only experienced minor fluctuations. In both cases, Scott Kelly’s data returned to pre-flight levels shortly after he returned to Earth.

One potential explanation, according to The Verge, is the specialized diet astronauts eat in space. But if the astronaut diet was entirely to blame, one would expect to see a change ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies