Atomic Force Microscopy

Digital Instrument's BioScope Anyone who has ever taken the time to critically examine a walnut knows that a two-dimensional photograph fails in many respects to truly convey the unique features--the nicks, crannies, valleys, and grooves--of the walnut shell. Researchers use atomic force microscopy (AFM) to literally map the surface of inert and biological samples to obtain three-dimensional images. Whereas technological developments in microscopy1,2 have facilitated the detailed characterizatio

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share


Digital Instrument's BioScope
Anyone who has ever taken the time to critically examine a walnut knows that a two-dimensional photograph fails in many respects to truly convey the unique features--the nicks, crannies, valleys, and grooves--of the walnut shell. Researchers use atomic force microscopy (AFM) to literally map the surface of inert and biological samples to obtain three-dimensional images. Whereas technological developments in microscopy1,2 have facilitated the detailed characterization and visualization of large macromolecular assemblies, AFM-generated surface topology maps can portray in explicit detail the surface features of such biological material as protein, DNA, and the membrane surface channels of cells.

AFM is just one of a number of novel microscopy technologies collectively known as scanning probe microscopy (SPM). In principle, all SPM technologies are based on the interaction between a submicroscopic probe and the surface of some material. What differentiates SPM technologies is the nature of the interaction and the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Carol Wright-smith

    This person does not yet have a bio.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome