Avoiding bacterial "friendly fire"

A bacterial protein sacrifices itself to protect the microorganism from its own antibiotic

Written byAndrea Rinaldi
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Antibiotic-producing bacteria have evolved a range of mechanisms to escape the lethal effects of their own chemical warfare, including antibiotic elimination through specific efflux pumps, antibiotic inactivation by modification of its chemical structure, modification of the antimicrobial target, and antibiotic sequestration. It has been suggested that self-protecting mechanisms have contributed to the widespread resistance of pathogenic bacteria to clinically important antibiotics. In the September 12 Science, John Biggins and colleagues at the University of Wisconsin–Madison describe a novel method by which some bacteria resist the potent toxins they produce and shed light on how bacteria might develop resistance to pharmaceutical antibiotics (Science, 301:1537-1541, September 12, 2003).

Biggins et al. studied the poorly known mechanism of resistance to enediynes, a set of antibiotics that are among the most potent cytotoxic antitumoral agents to have been discovered in the past decade. These highly reactive substances destroy bacteria by generating a reactive diradical ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo