Bacterial Biosensor IDs Endocrine-Disrupting Chemicals

Using freeze-dried E. coli and disposable electrodes, scientists engineer a sensor that can quickly detect EDCs.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

AMERICAN CHEMICAL SOCIETY Exposure to endocrine-disrupting chemicals (EDCs), compounds that interfere with native hormonal receptors, has been associated with everything from obesity to cancer. EDCs are present in a variety of consumer products—bisphenol A (BPA), for example, can be found in some plastic containers. Although these compounds are not trivial to find, last month (January 11) in ACS Central Science, a team at the University of California, Berkeley, reported on a new method for detection, which it developed using Escherichia coli bacteria.

“There are many [endocrine-disrupting] compounds found in the environment now due to pollution, fracking and other kinds of industrial processes,” said study coauthor Ariel Furst, a postdoctoral fellow at UC Berkeley. These compounds “can have [a] detrimental effect on health, leading to diseases and [other] problems,” she added.

E. coli cells naturally express estrogen receptors on their surfaces. Taking advantage of this, Furst and colleagues created an “electrochemical sandwich assay” with two components: freeze-dried bacteria that had been engineered to display estrogen receptors on their surfaces and disposable electrodes, which the researchers modified with proteins that bind to the estrogen receptor only when EDCs are present. “The way the electrochemical technique works is that it basically just measures how much of your surface is blocked,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Diana Kwon

    Diana is a freelance science journalist who covers the life sciences, health, and academic life.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit