Bacteriophage Boom?

Researchers are putting a fresh crop of phage-based products to agricultural and medical use, on farms and in early-stage clinical trials.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

PLOS BIOLOGY, PRECISION GRAPHICS, AATHAVAN AND CHEMLAThe search for alternatives to antibiotics has led many scientists to a treatment practice that’s been on the fringes of modern medicine for nearly a century. Bacteriophages—viruses that infect and kill bacteria—were first used in 1919 to treat a wide range of infections.

Phage therapy fell out of favor with the advent of antibiotics; the practice has only persisted in some European countries as an experimental treatment. However, earlier this year, phage therapy was highlighted as one of seven approaches to “achieving a coordinated and nimble approach to addressing antibacterial resistance threats” in a 2014 status report from the National Institute of Allergy and Infectious Diseases (NIAID).

Classically, the treatment uses a bacteriophage, or cocktail of several phages, to specifically lyse target pathogenic bacteria. Researchers and biotech companies continue to refine this method, but in the absence of clear regulatory and manufacturing practices—and potential profits—phage therapy has yet to become mainstream for “the same reason many big companies have gotten out of making new antibiotics,” said microbiologist Jason ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jyoti Madhusoodanan

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution