Benefits of mutation

Natural pathogenic bacteria populations can harbour mutator alleles (with high mutation rates) that may offer a selection advantage. In the March 30 Science, Giraud et al. describe a model to investigate the role of mutator alleles in influencing adaptation to complex environments in vivo (Science 2001, 291:2606-2608). They examined the colonization of the mouse gut by Escherichia coli strains with a high mutation rate due to a defective MutS protein. By examining bacteria in fecal samples they

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Natural pathogenic bacteria populations can harbour mutator alleles (with high mutation rates) that may offer a selection advantage. In the March 30 Science, Giraud et al. describe a model to investigate the role of mutator alleles in influencing adaptation to complex environments in vivo (Science 2001, 291:2606-2608). They examined the colonization of the mouse gut by Escherichia coli strains with a high mutation rate due to a defective MutS protein. By examining bacteria in fecal samples they could follow total population sizes. Within the first two weeks of mouse infection, the mutator bacteria exhibit an advantage in gut colonization and adaptation. But at later stages the accumulation of deleterious mutations appears to affect bacterial competitiveness in secondary environments and transmission between hosts. Hence, high mutation rates may be beneficial for generating early adaptative mutations, but harmful once adaptation is achieved. These results provide a system to study the rapid evolution ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Jonathan Weitzman

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio