Beyond the Blueprint

In addition to serving as a set of instructions to build an individual, the genome can influence neighboring organisms and, potentially, entire ecosystems.

| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

A GENETIC WEB: Interacting species, such as this Gulf fritillary butterfly (Agraulis vanillae) feeding on goldenrod blooms at the edge of a salt marsh on St. Simons Island, Georgia, have an intimate relationship: the genes of one are likely influencing the phenotype of the other.© BEACHCOTTAGEPHOTOGRAPHY/ISTOCKPHOTO.COM

The relationship between an individual’s phenotype and genotype has been fundamental to the genetic analysis of traits and to models of evolutionary change for decades. Of course, scientists have long recognized that phenotype responds to nongenetic factors, such as environmental variation in nutrient availability or the presence of other, competing species. But by assuming that the genetic component of a particular trait is confined to your genes and only yours, scientists overlooked another important input: the genes of your neighbors.

Take field crickets as an example. To identify potential mates, female crickets listen with ears on their forelegs to the males’ songs, produced by the rubbing together of their forewings. Some males emit series of long, trill-like chirps, an advertisement of their fitness that females ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Mark A. Genung

    This person does not yet have a bio.
  • Jennifer A. Schweitzer

    This person does not yet have a bio.
  • Joseph K. Bailey

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution