Binge-Drinking Trigger?

Researchers identify a protein linked to excessive consumption of alcohol in animal models.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, TIIA MONTOMice lacking a subunit of a G protein-gated inwardly rectifying potassium (GIRK) channel drank more ethanol than their wild-type counterparts when given access to the beverage for only two hours a day during a time when they would be most likely to drink—a test intended to mirror a bar’s happy hour. GIRK3 knockout mice did not drink to the point of intoxication when given continuous access to alcohol, however, suggesting this subunit specifically affects the tendency to binge drink, according to a study published this week (May 11) in PNAS.

“Alcohol hits a lot of different targets in our brain, which makes disentangling the in vivo effects of alcohol quite complicated,” coauthor Candice Contet, a biologist at the Scripps Research Institute in La Jolla, California, said in a statement. “Our study sheds light on the molecular mechanisms implicated in binge drinking.”

GIRK channels are inhibitory, decreasing the likelihood that a neuron will fire. But what effect the GIRK3 knockout was having was not initially clear. “Mice lacking GIRK3 could be drinking more because they feel more pleasure from alcohol and are therefore more motivated to drink—or they could be drinking more because they feel less pleasure and therefore need to drink more to reach the same level of pleasure as normal mice,” Contet said.

Further ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo