Bit by Bit, the Structure of the Potassium Ion Channel Emerges

Image: Courtesy of Roderick MacKinnon MAPPING THE PATH: The transmembrane pore of K+ channels is composed of four identical subunits, of which two are shown. The ion pathway contains a narrow selectivity filter (yellow) and a wide central cavity (asterisk). Three helical elements include the outer helix (M1), pore helix (P), and inner helix (M2). The gate is formed by the inner helix Bundle. (Reprinted with permission from Nature © 2002) Underlying every thought, heartbeat and movem

Written byNicole Johnston
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Underlying every thought, heartbeat and movement are ion channels, busily conducting high-speed streams of ions into cells, like subway trains coursing through tunnels. Ion channels span the cellular membrane, forming passageways, or pores, through which ions flow down electrochemical gradients. Despite extensive studies of ion channels dating back more than 50 years, crucial structural pieces of the puzzle were still missing that would explain how the high-throughput transmission of ions is achieved, how channels discriminate between ions, and how they open and close in a fraction of a millisecond.

One team is helping put those pieces together. Since 1998, Roderick MacKinnon, head of molecular neurobiology and biophysics, Rockefeller University, and Howard Hughes Medical Institute (HHMI) investigator, and colleagues have published papers revealing the potassium and chloride channel structures.1,2 In May the group published its latest findings, which show what the potassium channel looks like when it is open and how ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo