Book Excerpt from The Serengeti Rules

In the introduction to the book, author Sean B. Carroll draws the parallels between ecological and physiological maladies.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

PRINCETON UNIVERSITY PRESS, FEBRUARY 2016Human life has changed immensely over the millennia, but never so much or so quickly as in the last century. For almost the entire 200,000-year existence of our species, Homo sapiens, biology controlled us. We gathered fruits, nuts, and plants, hunted and fished for the animals that were available, and like the wildebeest or zebra, we moved on when resources ran low. Even after the advent of farming and civilization, and the development of cities, we were still very vulnerable to the whims of the weather, and to famine and epidemics.

But in just the last hundred years or so, we have turned the tables and taken control of biology. Scourges such as smallpox, a virus that killed as many as 300 million people in the first part of the 20th century (far more than in all wars combined) was not merely tamed, it was eradicated from the planet. Tuberculosis, caused by a bacterium that infected 70-90% of all urban residents in the 19th century and killed perhaps one in seven Americans, has nearly vanished from the developed world. More than two dozen other vaccines now prevent diseases that once infected, crippled, or killed millions, including polio, measles, and pertussis. Deadly diseases that did not exist in the nineteenth century, such as HIV/AIDS, have been stopped ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sean B. Carroll

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio