Budding interactome

Functional genomics aims to turn genomic information into a comprehensive understanding of the workings of the cell at the molecular level. It is assumed that extensive knowledge of the interactions between proteins will contribute significantly to this goal. In the Early Edition of Proceedings of the National Academy of Sciences, Ito et al. describe the results of a comprehensive high-throughput screen to identify all the protein-protein interactions (the 'interactome') in the budding yeast S

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Functional genomics aims to turn genomic information into a comprehensive understanding of the workings of the cell at the molecular level. It is assumed that extensive knowledge of the interactions between proteins will contribute significantly to this goal. In the Early Edition of Proceedings of the National Academy of Sciences, Ito et al. describe the results of a comprehensive high-throughput screen to identify all the protein-protein interactions (the 'interactome') in the budding yeast Saccharomyces cerevisiae. They used the yeast two-hydrid approach to screen 'bait' proteins representing the entire 6000 proteins encoded by the yeast genome. They identified 4,549 interactions between 3,278 proteins. Among the interactions are subnetworks implicated in distinct biological events, such as spindle-pole-body function, autophagy and vesicular transport. Less than 20% of these interactions overlap with those identified in an independent screen, emphasizing the experimental limitations of the methodology and the difficulty in obtaining fully comprehensive datasets.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Jonathan Weitzman

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome