Budding interactome

Functional genomics aims to turn genomic information into a comprehensive understanding of the workings of the cell at the molecular level. It is assumed that extensive knowledge of the interactions between proteins will contribute significantly to this goal. In the Early Edition of Proceedings of the National Academy of Sciences, Ito et al. describe the results of a comprehensive high-throughput screen to identify all the protein-protein interactions (the 'interactome') in the budding yeast S

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Functional genomics aims to turn genomic information into a comprehensive understanding of the workings of the cell at the molecular level. It is assumed that extensive knowledge of the interactions between proteins will contribute significantly to this goal. In the Early Edition of Proceedings of the National Academy of Sciences, Ito et al. describe the results of a comprehensive high-throughput screen to identify all the protein-protein interactions (the 'interactome') in the budding yeast Saccharomyces cerevisiae. They used the yeast two-hydrid approach to screen 'bait' proteins representing the entire 6000 proteins encoded by the yeast genome. They identified 4,549 interactions between 3,278 proteins. Among the interactions are subnetworks implicated in distinct biological events, such as spindle-pole-body function, autophagy and vesicular transport. Less than 20% of these interactions overlap with those identified in an independent screen, emphasizing the experimental limitations of the methodology and the difficulty in obtaining fully comprehensive datasets.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel