Building a Better Optical Trap

Shortly after the invention of the laser, Bell Labs physicist Arthur Ashkin began exploring the range of the new devices.

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

Shortly after the invention of the laser, Bell Labs physicist Arthur Ashkin began exploring the range of the new devices. Could the force of light in the beam move an object, much as a finger pushes a ball, he wondered? If they did, it would confirm an old theory that had intrigued him since his college days during WWII.1 "It was known a laser could push [a particle], the question was, could you observe it," Ashkin recalls. But he discovered something else, as well: "I discovered when I did that, that there were forces that were pulling the particles into the high-intensity regions of the beam."

Thus was born the concept of "optical trapping," or "optical tweezers" – systems of lasers and optics that can hold micrometer-scale objects steady against Brownian motion. Experiments done with such systems would win several physicists the Nobel Prize, but they were of little use ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Karen Heyman

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours