Building Flesh and Blood

Understanding how networks of blood vessels form is key to engineering transplantable organs and tissues.

Written byJalees Rehman
| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

LIFELINES: The arteries and veins of the human heart (shown here injected with dyed gelatin) are critical to the organ’s function, with blood flow delivering life-giving nutrients to the cardiac muscles while removing toxic waste. In the quest to engineer transplantable organs, researchers must consider how to build comparable blood-vessel networks. © SPL/SCIENCE SOURCE

Thousands of unfortunate patients are badly in need of a replacement organ. As of April 2014, more than 122,000 such people in the United States were on the waiting list maintained by the national Organ Procurement and Transplant Network. But fewer than 30,000 of those patients will actually receive the transplant surgery they need this year. That’s because living or deceased donors constitute the only source of new organs, one that for years has not been able to keep pace with demand.

As the number of patients with severe, irreversible organ damage continues to rise, this gap will only widen. To fill the need, researchers are exploring whether they can build functional organs from scratch. Since the 1980s and 1990s, scientists and surgeons have used ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH