Bumblebees’ Electric Sense

Tiny hairs may enable the insects to detect floral electric fields, according to a study.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A bee approaches a flower’s electric fieldUNIVERSITY OF BRISTOLBees use electric fields to help home in on flowers, but the mechanism by which the insects do so was a mystery. To find out, scientists used lasers to determine whether the antennae or tiny hairs on the bodies of bumblebees moved in response to an electric field. While both structures were deflected in the field, only the hairs produced neural activity, suggesting the latter may be responsible for the insects’ electric sense, researchers at the University of Bristol, U.K., reported yesterday (May 30) in PNAS.

“This is a very neat study confirming the recent discovery that bees and some other insects are sensitive to natural electric fields and may use them in their everyday life to forage and communicate,” Mathieu Lihoreau of the Paul Sabatier University in Toulouse, France, wrote in an email to The Scientist. “Deflection of mechanosensory hairs . . . provides a very simple mechanism and raises the possibility that this phenomenon may be much more common than previously thought, at least in hairy insects.”

Historically, electroreception has most widely been observed in aquatic animals, such as sharks, fish, and dolphins. A few terrestrial animals—including platypuses and echidnas—are also known to have an electric sense, but they require a moist environment to conduct the signals. In 2013, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tanya Lewis

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit