Bumblebees’ Electric Sense

Tiny hairs may enable the insects to detect floral electric fields, according to a study.

Written byTanya Lewis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A bee approaches a flower’s electric fieldUNIVERSITY OF BRISTOLBees use electric fields to help home in on flowers, but the mechanism by which the insects do so was a mystery. To find out, scientists used lasers to determine whether the antennae or tiny hairs on the bodies of bumblebees moved in response to an electric field. While both structures were deflected in the field, only the hairs produced neural activity, suggesting the latter may be responsible for the insects’ electric sense, researchers at the University of Bristol, U.K., reported yesterday (May 30) in PNAS.

“This is a very neat study confirming the recent discovery that bees and some other insects are sensitive to natural electric fields and may use them in their everyday life to forage and communicate,” Mathieu Lihoreau of the Paul Sabatier University in Toulouse, France, wrote in an email to The Scientist. “Deflection of mechanosensory hairs . . . provides a very simple mechanism and raises the possibility that this phenomenon may be much more common than previously thought, at least in hairy insects.”

Historically, electroreception has most widely been observed in aquatic animals, such as sharks, fish, and dolphins. A few terrestrial animals—including platypuses and echidnas—are also known to have an electric sense, but they require a moist environment to conduct the signals. In 2013, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH