Burning Chromatin at Both Ends

Shiv Grewal has seen both late nights and early mornings in the lab – and connections between seemingly disparate elements that other molecular biologists might miss.

Written byKaren Hopkin
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Shiv Grewal hasn't slept much in the past eight or nine years. Not since he found that in fission yeast, gene silencing depends on the machinery that carries out RNA interference (RNAi), a discovery that effectively tied together two of the hottest areas in modern cell biology. "I've never seen someone work so hard," says former postdoc Ken-ichi Noma of the Wistar Institute in Philadelphia. "I'm Japanese, and Japanese people usually try to work more than the boss. But I gave up. It was physically impossible. He was in lab by 9:00 every day and then he worked until 3:00 or 4:00 in the morning. I don't know how he did it."

"When we'd be writing a paper, I'd send him a draft at two in the morning and he would reply immediately. And the next morning at 9:00, there he'd be," adds Songtao Jia of Columbia University, another former ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH