Can Plants Learn to Associate Stimuli with Reward?

A group of pea plants has displayed a sensitivity to environmental cues that resembles associative learning in animals.

Written byBen Andrew Henry
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ANDRZEJ KRAUZE

In 2007, plant biologists passionately argued the meaning of the word “neurobiology.” The year before, an article published in Trends in Plant Science had announced the debut of a new scientific field: plant neurobiology. The authors suggested that electrical potentials and hormone transport in plants bore similarities to animal neuronal signaling, an idea that raised the hackles of many a botanist. Thirty-six plant scientists signed a letter briskly dismissing the new field, calling the comparison between plant signaling—intricate though it is—and animal signaling intellectually reckless. “Plant neurobiology,” they wrote, was no more than a “catch-phrase.”

Upon close examination, the “neurobiology” debate did not center on very much scientific disagreement. Researchers in both camps agreed on the general facts: plants did not have neurons, nor did they have brains, but they did possess complicated, poorly understood means of responding to the environment that deserved rigorous study. The community was conflicted over how to talk about these abilities and whether the semantic umbrella of words such as “feel,” “choose,” and “intelligence” should extend to plants.

The rhetoric surrounding the argument has since cooled, but the debate was never entirely resolved. And in 2016, Monica Gagliano of the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH