Carolyn Bertozzi
Anne T. and Robert M. Bass Professor of Chemistry Stanford University
Investigator, Howard Hughes Medical InstituteLINDA A. CICERO/STANFORD NEWS SERVICEI was one of three girls, and when we were asked in school what we wanted to be when we grew up, and other kids said doctor or fireman, we each said ‘medium-energy nuclear physicist,’” laughs Carolyn Bertozzi, whose father was a professor of applied physics at MIT in Boston. “As early as I remember, he would talk about how, when we grew up, we were going to be nuclear physicists,” recalls the Stanford University chemistry professor. As little kids, she and her sisters donned MIT T-shirts and attended summer day camp there. “That was the difference between us and the other kids, especially the girls. I was born in the mid-1960s at a time when women were catastrophically underrepresented in science and actively discouraged from higher education,” she says. Bertozzi’s own mother had put herself through secretarial school instead of attending college because “her parents were not supportive, thinking [college] was a waste of money.” Bertozzi’s parents sent her and her sisters—a younger sister is an occupational therapist, and an older sister, Andrea, is an applied math professor at UCLA—a clear message: “Go to college, get a PhD in science, have your own career, be independent,” Bertozzi recounts.
Bertozzi enjoyed high school biology, but was not particularly drawn to other sciences. She entered Harvard University in 1984, initially majoring in biology. She had been recruited to play soccer and originally wanted to major in music. “I played keyboard in jazz and heavy metal bands.” But Bertozzi had also followed in her older sister’s footsteps, joining math teams in junior high and high school. “I mostly did whatever my sister did, because I didn’t have a better idea,” she says.
Thinking she might go to medical school, Bertozzi took the required organic chemistry course as a sophomore and something clicked: “Organic chemistry turned out to be my thing. I loved how you could see the three-dimensional molecules—their shapes and behaviors—and that there were just ...