Cellular Pegs-in-Holes

Cell-containing hydrogel shapes fit into a template to create an artificial tissue environment.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

PUZZLE GAME: Hydrogel cylinders containing mesenchymal stem cells (MSCs) and hydrogel rectangles containing endothelial cells (ECs) settle into their respective holes in a hydrogel template (above). After 7 days of culture in the template, the MSCs were seen migrating towards the ECs (below).COURTESY OF GORDANA VUNJAK-NOVAKOVIC. PNAS, 110:4551-56, 2013In living tissue, cells interact with other cells, nutrients, and signaling molecules in complex 3-D microenvironments. Recreating such spatial arrangements in culture can be challenging, says Gordana Vunjak-Novakovic, a professor of biomedical engineering and medical sciences at Columbia University in New York City. But her new approach makes the process practically child’s play.

COURTESY OF GORDANA VUNJAK-NOVAKOVIC. PNAS, 110:4551-56, 2013

Like the toddler game of fitting shapes into matching holes, the technique involves mixing a selection of hydrogel shapes—cylinders, rectangles, cubes, each containing a certain type of cell or molecule—and allowing them to settle into holes in a hydrogel template that are cut to fit each specific shape. And just as a toddler might fail to find the right hole on the first try, only about one in five hydrogel shapes hit their target initially. Once in their holes, however, the shapes stay in place, and subsequent rounds of shaking and settling allow more holes to be filled.

Using this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies