Chromosome replication

The initiation of chromosome replication is exquisitely regulated in both time and location. It has been estimated that there are 200-400 autosomal replication sequence elements (ARSs) in the yeast genome that act as replication origins. Although they share some common sequence features, origins are difficult to predict from genomic sequence. In the October 5 Science, Raghuraman et al., from the University of Washington in Seattle, describe a microarray-based approach to investigate the kinetics

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The initiation of chromosome replication is exquisitely regulated in both time and location. It has been estimated that there are 200-400 autosomal replication sequence elements (ARSs) in the yeast genome that act as replication origins. Although they share some common sequence features, origins are difficult to predict from genomic sequence. In the October 5 Science, Raghuraman et al., from the University of Washington in Seattle, describe a microarray-based approach to investigate the kinetics of replication across the entire budding yeast genome (Science 2001, 294:115-121).

They used isotopically dense culture medium to isolate replicated and unreplicated DNA at different points during S phase of the cell cycle, and hybridized the DNA to oligonucleotide microarrays. In this way they could define the replication profile of a chromosome and the time and location of many origins, as well as information about the rate and direction of replication-fork migration.

They detected 332 origins in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel