Circadian Gene Linked to Severe Epilepsy in Children

Loss of the CLOCK protein, which researchers find is decreased in pediatric epilepsy patients, makes mice more prone to seizures during sleep.

Written byDiana Kwon
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Arrows indicate the brain regions where seizures originate in one of the patients included in the study. LIU ET AL.

In the suprachiasmatic nucleus, the brain’s central pacemaker, CLOCK (circadian locomotor output cycles kaput) is a transcription factor that plays a crucial role in regulating circadian rhythms. However, this protein also appears outside this region, in the cerebral cortex, where its function is still unclear. A new study, published today (October 11) in Neuron, suggests that the loss of CLOCK in the cortex is associated with certain severe forms of epilepsy.

Prior studies have provided hints of a link between epilepsy and our sleep-wake cycles. For example, researchers have observed that seizures tend to follow circadian rhythms, and that some individuals are more susceptible to seizures during sleep. Others have reported, based on animal experiments, that changes in the expression of clock genes, such as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH