Closing the Case on STAP?

Several reports offer an inside look into the stem-cell research controversy.

Written byKaren Zusi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

HARUKO OBOKATALast year, two Nature papers in which researchers reported having created pluripotent stem cells by stressing differentiated mouse cells were published, questioned, and subsequently retracted. The confusion led to multiple misconduct investigations and a media firestorm, and reportedly contributed to the death of one of the studies’ authors. A set of papers published today (September 23) in Nature brings to light additional details regarding the controversial stimulus-triggered acquisition of pluripotency—or STAP—research.

In their original articles (published in January 2014; retracted in July 2014), lead author Haruko Obokata of Japan’s RIKEN Center for Developmental Biology and her colleagues reported that exposure to an acid bath could reprogram mature cells into pluripotent STAP cells. Within weeks, other researchers reported difficulty reproducing the published protocols. (Obokata resigned from RIKEN in December 2014.)

As it turns out, contamination of the supposed STAP cells with embryonic stem cells may have been in part to blame. In one of the Nature commentaries published today, researchers from RIKEN and the Tokyo Institute of Technology examined this aspect of the STAP reproducibility problem.

“The publication and retraction of STAP papers strongly influenced the national scientific community, especially the stem-cell community. We felt that we ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH