CRISPR Rejiggered to Turn Genes On

Researchers modify the genome-editing tool to flip the switch on any gene they wish.

Written byKerry Grens
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA, HIROSHI NISHIMASU ET AL. The CRISPR-Cas genome-editing system interferes with a target sequence of DNA, usually with the goal of inhibiting the expression of a gene or modifying its code. The Cas enzyme has been adjusted so that it can also activate genes, but the effect is far less robust. Feng Zhang of the Broad Institute and MIT and colleagues have now tweaked Cas so that it can upregulate any gene of interest, even those that have resisted previous attempts using CRISPR-Cas.

According to a study published this week (December 10) in Nature, Zhang’s group used structural data of the Cas9 enzyme to re-engineer it to include gene activation complexes in new sites. “Here we have shown that the . . . system is robust, specific, and can facilitate genome-scale gain-of-function screening when combined with a compact pooled [guide RNA] library,” the authors wrote in their report.

“If you use the older generation of tools, getting the technology to do what you actually want is a project on its own,” graduate student Silvana Konermann, the lead author of the study, said in a press release. “It takes a lot of time and is also quite expensive.”

The team then made a library of guide sequences to use ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery