Curious George

George Church has consistently positioned himself at genomics’ leading edge.

Written byAnna Azvolinsky
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

GEORGE CHURCH
Professor of Genetics, Harvard Medical School, Boston, MA Senior Associate,
Broad Institute of MIT and Harvard
PHOTO BY SETH KROLL
In 1973, after trying out two other groups, George Church finally found the perfect fit in Sung-Hou Kim’s X-ray crystallography lab, where he spent his second (and final) year as a Duke University undergraduate. “It was all of the things I was interested in—physics, math, biology, chemistry, and computers—in one. Kim had just come from MIT and was young and full of energy,” says Church, now a professor of genetics at Harvard University. “He saw a spark in me that few people had noticed before, and he treated me almost as an equal. I started to blossom in that lab.”

Church knew that he wanted to go to graduate school, and had already applied to the microbiology PhD program at Duke when he began to work with Kim. “I thought I should stay at the same university because I was young and immature.” Church began his PhD at Duke while continuing to work alongside Kim, with whom he would soon publish five papers, including one on modeling DNA-protein interactions and another on the three-dimensional structure of transfer RNAs. Twelve months into his microbiology PhD, Church decided instead to pursue a degree in biochemistry, but was booted out at the beginning of 1976. The biochemistry curriculum didn’t capture his interest any more than microbiology’s had, and after he’d flunked two courses, even Kim could not convince ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

October 2016

30th Anniversary Issue

How life science research has changed since 1986

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies