Deep Learning Allows for Cell Analysis Without Labeling

A new microscopy program requires no fluorescent markers to identify cell type, nuclei, and other characteristics.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

This image shows the program “thinking,” as it considers what cellular structures to identify. IMAGE COURTESY OF DR. FINKBEINER, GLADSTONES INSTITUTES AND UCSFMicrographs of fluorescently labeled cells are undoubtedly beautiful, but they require invasive and sometimes disruptive or deadly protocols to get their glow. To avoid such perturbations, researchers have developed a computer program that can distinguish between cell types and identify subcellular structures, among other features—all without the fluorescent probes our human eyes rely on.

“This approach has the potential to revolutionize biomedical research,” Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partially funded the work, says in a statement.

The researchers, who published their work in Cell today (April 12), designed their a neural network, a program modeled after the brain, using an approach called deep learning, which uses data to recognize patterns, form rules, and apply those rules to new information. “We trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels,” coauthor Eric Christiansen, a software engineer at Google Accelerated Science, says a press release. “We repeated this process millions of times. Then, when we presented the network ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel