Superficial (red) and deep (cyan) neurons in CA1 mouse hippocampusNATHAN DANIELSON/MORTIMER B. ZUCKERMAN MIND BRAIN BEHAVIOR INSTITUTEIf you’ve ever found yourself walking a few city blocks only to realize you’ve gone in completely the wrong direction, you’ll appreciate the importance of the brain’s ability to keep track of its location and navigate effectively.
In recent years, research on mammalian navigation has focused on the role of the hippocampus, a banana-shaped structure known to be integral to episodic memory and spatial information processing. The hippocampus’s primary output, a region called CA1, is known to be divided into superficial and deep layers. Now, using two-photon imaging in mice, researchers at Columbia University in New York have found these layers have distinct functions: superficial-layer neurons encode more-stable maps, whereas deep-layer brain cells better represent goal-oriented navigation, according to a study published last week (July 7) in Neuron.
“There are lots of catalogued differences in sublayers of pyramidal cells” within the hippocampus, study coauthor Nathan Danielson of Columbia told The Scientist. “The question is, are the principle cells in each subregion doing ...