Diagnosing cancer with artificial neural networks

Artificial neural networks can efficiently distinguish human subtypes of neoplastic colorectal lesions.

Written byTudor Toma
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Artificial neural networks (ANNs) are a novel means for analyzing information, and are composed of a large number of highly interconnected processing elements, which can learn through example. In February 13 online Gastroenterology, Florin Selaru and colleagues from University of Maryland School of Medicine, Baltimore, USA, show that ANNs can be used to distinguish different subtypes of neoplastic colorectal lesions in human samples.

Selaru et al. hybridized cDNA microarrays — each containing 8064 cDNA clones — to RNAs derived from 39 colorectal neoplastic specimens with either inflammatory bowel disease-dysplasias (IBDNs) or cancer or sporadic colorectal adenomas (SACs) and cancers. On this model they found that an ANN constructed and trained to differentiate IBDNs from SACs correctly diagnosed 12 of 12-blinded samples in a test set. But hierarchical clustering based on all 8064 clones failed to correctly categorize the samples. In addition, they showed that even with a reduced clone set ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo