Diagnosing cancer with artificial neural networks

Artificial neural networks can efficiently distinguish human subtypes of neoplastic colorectal lesions.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Artificial neural networks (ANNs) are a novel means for analyzing information, and are composed of a large number of highly interconnected processing elements, which can learn through example. In February 13 online Gastroenterology, Florin Selaru and colleagues from University of Maryland School of Medicine, Baltimore, USA, show that ANNs can be used to distinguish different subtypes of neoplastic colorectal lesions in human samples.

Selaru et al. hybridized cDNA microarrays — each containing 8064 cDNA clones — to RNAs derived from 39 colorectal neoplastic specimens with either inflammatory bowel disease-dysplasias (IBDNs) or cancer or sporadic colorectal adenomas (SACs) and cancers. On this model they found that an ANN constructed and trained to differentiate IBDNs from SACs correctly diagnosed 12 of 12-blinded samples in a test set. But hierarchical clustering based on all 8064 clones failed to correctly categorize the samples. In addition, they showed that even with a reduced clone set ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Tudor Toma

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo