Different codons, same amino acid

Study shows that synonymous codon usage varies in human tissues, perhaps due to evolution

Written byMelissa Phillips
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The genomes of species from bacteria to Drosophila show unique biases for particular synonymous codons—varying triplet base pairs that code for the same amino acids—but it has been unclear if such codon preferences exist in mammals. In a paper published in PNAS this week, a group led by Joshua B. Plotkin of the Bauer Center for Genomic Research at Harvard shows that cell usage of synonymous codons is systematically different between human tissues. In addition, the authors make a case that these codon choices result from evolutionary selection.

Plotkin and his colleagues analyzed genes expressed preferentially in six human tissues—brain, liver, uterus, testis, ovary, and vulva—and found synonymous codon biases between gene sets. In particular, they compared brain-specific genes to liver-specific genes; uterus genes to testis genes; and ovary genes to vulva genes. All three pairs differed significantly from each other in their synonymous codon usage.

"We can even predict ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo