Diversity Defeats Disease

In a pond, more amphibian species mean decreased chances of disease spread.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Trematode-infected frog with limb deformitiesD. Herasimtschuk, Freshwaters IllustratedThe chance of a frog getting infected by a parasitic worm that causes limb deformities is less if it lives among a diverse array of pond mates that can also be infected, according to a study published today (February 13) in Nature. The report provides proof for the long-held theory that diversity drives down the spread of pathogens, and has implications beyond the pond, in human health and disease.

“This is the most complete study I’ve seen on biodiversity decreasing disease,” said Andrew Blaustein, a professor of zoology at Oregon State University, who was not involved in the study.

“The study is unusually comprehensive in combining field and lab and mesocosm—[controlled ecosystem]—studies,” agreed Rick Ostfeld, a disease ecologist at the Cary Institute of Ecosystem Studies, in Millbrook, New York, who also did not participate in the work. “It’s delightfully elegant in covering all the bases.”

According to a theory, known as the dilution effect, having a variety of host species to infect will actually reduce the chances that a parasite will spread. The idea is, hosts that are readily susceptible to infection will become diluted in the population by more resistant hosts as diversity ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH