DNA with a Twist

Researchers show that DNA supercoils are dynamic structures that can “hop” long distances, a phenomenon that could affect gene regulation.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Scientists’ understanding of how long strings of DNA are packaged into tiny spaces just got a little more complicated. New research on single molecules of DNA show that supercoils—segments of extra-twisted loops of DNA—can moving by “jumping” along a DNA strand. The results, published today (September 13) in Science, give researchers new insights into DNA organization and point to a surprisingly speedy mechanism of gene regulation inside cells.

“This is the first study that addresses the dynamics of DNA supercoils,” said Ralf Seidel, who studies movement of molecular motor proteins along DNA at the University of Technology Dresden, but was not involved in the research. This supercoil hopping motion “allows DNA strands to transmit supercoiling, bringing sites together in very fast manner.”

DNA, being a double helix, is naturally twisted. In vivo, it’s packaged with proteins called histones that help condense the millions or billions of nucleotides into the small ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH