Down for the Count

One, two, three, four . . . . Counting colonies and plaques can be tedious, but tools exist to streamline the process.

Written byAmber Dance
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

BLOODY COUNTING: A stack of Silvio Brugger’s blood agar plates for growing bacterial colonies.PHOTO BY PASCAL M. FREY/COURTESY OF SILVIO BRUGGERWhile studying bacterial resistance to penicillin in medical school, Silvio Brugger was horrified to discover that he and a colleague would have to count colonies growing on 100 or so petri dishes every day. He thought, “Oh my God, I cannot do this,” says Brugger, now working at the University of Bern in Switzerland. “It was quite painful.”

Brugger is hardly alone: if you want to know how many bacteria or viruses you have, the standard method is to plate serial dilutions and count the resulting colonies or plaques. While some scientists may not mind the repetitive activity—“I don’t find it too bad,” says virologist Vincent Racaniello of Columbia University in New York—others find the work incredibly tedious. Yet tallying each speck by hand remains the technique of choice in most labs that study bacteria or yeast, says Martin Smith, sales manager at Synbiosis in Cambridge, U.K., which makes automated colony counters. In virology, plaques are the best way to confirm that viruses completed the full infectious cycle, says Racaniello, who studies polio- and rhinovirus in animal cell culture.

However, scientists faced with ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform