Engineering Virus-Resistant Plants

Researchers use CRISPR to create plants that resist infection by DNA viruses.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Nicotiana benthamianaWIKIMEDIA, CHANDRESThe CRISPR/Cas9 system can be used to deliver stable molecular immunity against DNA viruses that infect plants, according to a study published this week (November 10) in Genome Biology. Researchers at Saudi Arabia’s King Abdullah University of Science and Technology have so far tested the gene-editing tool in Nicotiana benthamiana, a relative of the tobacco plant often used in studies on plant-pathogen interactions. If the approach works in crops like the tomato, viral resistance could minimize crop loss and its economic consequences, the researchers noted.

“The study is a proof of concept that CRISPR/Cas9 can be used to destroy DNA viruses and block viral infection and disease progression,” said Yinong Yang, who studies molecular plant-microbe interactions at Pennsylvania State University but was not involved in the work. “RNA interference has been tried to control DNA viruses in plants, but it has not worked well.”

Based on the reported results, “I believe that the CRISPR-Cas9 system can be extensively applied as a new weapon at a molecular level to protect plants from DNA viruses,” Jianwei Zhang of the University of Arizona and the Arizona Genomics Institute, who was not involved in the work, wrote in an email to The Scientist.

Magdy Mahfouz, an assistant professor at the Center for Desert Agriculture ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies