Enzyme Checks Neuronal Growth

A microtubule-severing enzyme curbs the regeneration of damaged nerve cells.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, ZUZANNA K. FILUTOWSKAFidgetin is one of a number of enzymes that can pull apart microtubules. Other so-called microtubule-severing enzymes are known to aid in the growth of neurons. In a new study, presented today (December 17) in a poster at the American Society for Cell Biology meeting in New Orleans, researchers show that fidgetin may play a different role, putting a lid on axon growth.

They found that knocking down fidgetin in adult rat neurons caused a surge in axon lengthening. The finding “speaks to the importance of microtubule organization” during neuron growth, said Melissa Rolls, a regeneration researcher at Penn State University who was not involved in the study. “The bottom line is microtubules have to be incredibly carefully regulated during injury responses.”

Although peripheral neurons can repair themselves after being damaged, those in the central nervous system are pretty much helpless after an injury. That's why spinal cord injuries are so lasting and devastating. In the search for pathways that help neurons to grow, researchers had previously identified enzymes involved in reshaping microtubules in the cells' axons. Rolls has shown that one microtubule-severing enzyme called spastin, for instance, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH